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ABSTRACT

The aim of this paper is to generalize some results which are obtained by Kikkawa and
Suzuki (2008) and others to the setting of cone metric spaces.
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1. INTRODUCTION

Banach contraction principle is widely recognized as the source of
metric fixed point theory. This principle plays an important role in several
branches of mathematics. A multivalued version of the Banach contraction
principle was obtained by Nadler (1976). He used the concept of Hausdorff
metric which is defined by

H(A, B) = max{supyepd(y, A), supxead(x, B)}
for A,B € CB(X) and d(x, B) = inf,epd(x,y).

Berinde-Berinde (2007) gave a generalization of Nadler’s fixed point
Theorem and proved the following theorem:
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Theorem 1. Let (X,d) be a complete metric space and T:X — CB(X).
Assume that there exist a function a:[0,o) — [0,1)and ¢ > 0 satisfying
limsup,_+a(r) < 1, forevery t € [0, o), such that

H(Tx,Ty) < a(d(x,y))d(x,y) +£d(y,Tx)
forall x,y € X. Then T has a fixed pointin X.

After that, Kikkawa and Suzuki (2008) gave another generalization of
Nadler’s result which is different from Berinde-Berinde Theorem. .

Theorem 2. Define a strictly decreasing function n from [0,1) into (1/2,1]
by n(r) =1/(1+r). Let (X,d) be a complete metric space and T be a
mapping from X into CB(X). Assume that there exists » € [0,1) such that
n(d(x,Tx) < d(x,y) implies H(Tx,Ty) < rd(x,y) for all x,y € X.
Then there exists z € X such that z € Tz.

Recently, Huang and Zhang (2007) introduced a cone metric space which is a
generalization of a metric space. They generalized Banach contraction
principle for cone metric spaces. Since then, many authors (Han and Xu
(2013); Kunze et al. (2012); Nashine et al. (2013); Rezapour and Hamlbarani
(2008); Shaddad and Noorani (2013) and Shatanawi et al. (2012)) obtain
fixed point theorems in cone metric spaces in many various directions.
Especially, the authors (Cho and Bae (2011); Cho et al. (2012); Latif and
Shaddad (2010); Lin et al. (2012); Wardowski (2009) and WIlodarczyk and
Plebaniak (2012)) proved fixed point theorems for multivalued maps in cone
metric spaces.

In this article, we give a generalization of Theorem 1 and Theorem 2 to the
case of cone metric spaces. Furthermore, we extend and generalize Theorem
2.1 of Cho et al. (2012), Theorem 2.1 of Pathak-Shahzad (2009), Theorem
4.2 of Kamran-Kiran (2011) and others.

Consistent with Huang and Zhang (2007), the following notions, definitions
and results will be needed in the sequel.

Let E be areal Banach space and P be a subset of E. P is called a cone if
and only if
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1. Pisclosed, P#¢, P={0};
2. forall X,y e P = ax+ py P, wherea, g € RY;
3. Pn—P ={0}.

For a given cone P < E, we define a partial ordering < with respect to P
by the following: for X,y € E, we say that x < y if and only if y—xeP.

Also, we write x «< y for y—X eintP, where intP denotes the interior of
P.

The cone P is called normal if there is a number K >0 such that for all
X,yekE
Osx<xy=lIxI<KIyl.

The least positive number K satisfying this is called the normal constant of
P (Huang and Zhang (2007)).

In this paper, we always suppose that E is a real Banach space, P is a cone
in E, and < is a partial ordering with respectto P .

Definition 3.

Let X be a nonempty set. Suppose the mapping d: X x X — E satisfies

(d1) 0 < d(x,y) forall x,ye X ,and d(x,y)=0 ifandonlyif x=y
(d2) d(x,y) =d(y,x) forall x,y e X
d3)d(x,y) < d(x,z) +d(z,y) forall x,y,ze X.

Then d is called a cone metric on X , and (X,d) is called a cone metric
space .

Definition 4.

Let (X,d) be a cone metric space and {Xx,} a sequence in X . Then
(1) {x,} converges to Xe X whenever for every Ce E with 0 «<c,
there is a natural number N such that d(x,,x) < cforall n>N;
we denote this by lim_ . X =X or x, > X;

n—o0""n
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(2) {x.} isa Cauchy sequence whenever for every C € E with 0 « c,

there is a natural number N such that d(x,,, x,,) < ¢ for all
nm=>N;

(3) (X,d) is said to be complete if every Cauchy sequence in X is
convergentin X .

The following remark was obtained by Kadelburg et al. (2009) is often used
(in particular when dealing with cone metric spaces in which the cone need
not be normal):

Remark 5.

(1) fu< vandv K w,thenu K w.

(2) If 0 < u K c foreach c € intP, thenu = 0.

(3) If u < v+ cforeach c € intP, thenu < v.

4 Ifosx<yand0<a,then0 < ax < ay.

(5) If 0 < x, < ypforeachn € N, and lim,,, o, x, = x, lim, 00 Y5, = ¥,
then0 < x < y.

(6) If c € intP,0 < a, and a,, — 0, then there exists n, such that for all
n > n, we have ana,, < c.

Let (X, d) be a cone metric space. We denote 2%as a collection of nonempty
subsets of X, B(X) as a collection of nonempty bounded subsets of X, CI(X)
as a collection of nonempty closed subsets of X and CB(X) as a collection of
nonempty closed and bounded subsets of X. An element x € X is called a
fixed point of a multivalued map T: X — 2% if x € T(x). Denote Fix(T) =
{x€e X:xe T(x)}. For T:X - Cl(X), and x € X we denote D(x,Tx) =
{d(x,z):z € Tx}. According to Cho and Bae (2011), we denote s(p) = {q €
E:p< q} forp € E, and s(a,B) =Upecp s(d(a,b)) for a€ X and B €
2%,

For A,B € B(X) we denote s(4,B) = (Ngea S(a,B)) N (Nye g s(b,A)).
In 2011, Cho and Bae (2011) generalized the Nadler’s result Nadler (1976) to
the setting of cone metric space. Moreover, they gave a useful lemma which

will be used to prove our results.

Lemma 6. (Cho and Bae (2011)). Let (X, d) be a cone metric space, and let P
be a cone in Banach space E.
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(1) Letp,q € E. If p < q,thens(q) c s(p).

(2) Letx € Xand A € 2%, If 0 € s(x,A), thenx € A.

(3) Let g € Pand let A,B€ B(X) and a € A. If g € s(4,B), then
q € s(a,B).

In 2012, Cho et al. (2012) defined sequentially lower semicontinuous as
follow

Definition 7. Let (X,d) be a cone metric space, and let A € 2%. A function
h: X - 2P —{@} defined by h(x) =s(x,A)is called sequentially lower
semicontinuous if for any c € intP there exists n, € N such that h(x,) c
h(x) —c for all n>=n, whenever lim,_,x, =x for any sequence
{x,} € Xandx € X.

2. NEW RESULTS

Theorem 8. Let (X, d) be a complete cone metric space and T: X — CB(X).
Let n be a nonincreasing function from [0,1) into (1/2,1] defined by
n(r) =1/(1+r). Assume that there exists r € [0,1). Assume for any
x € X there exist y € Tx and u € D(x,Tx) such thatn(r)u < d(x,y)
implies rd(x,y) € s(Tx,Ty). Then T has a fixed point in X.

Proof.

Let x, € X and x; € Txythen there exists uy = d(xg, x1) € D(xo, Txg) such
that

n(rue < d(xg, %)
then
rd(xg,x1) € s(Txg, Txq)

by lemma 6 we have
rd(xg,x1) € s(x1,Txy).

By definition, we can take x, € Tx, such that
rd(xg, x1) € s(d(xl,xz)).

So
d(x1,x,) < rd(xg, x1).
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Now, we can take u; = d(x1,x;) € D(xq,Tx;) such that

n(ruy < d(xq,x2)
then
d(x1,%3) € s(Txq,Txy)

this implies
rd(xq,x;) € s(xy,Txy)

take x3 € Tx,, then we have
rd(x1,x;) € s(d(x,x3)).

Thus
d(x,,x3) < rd(xq,x5).

By induction we get an iterative sequence {x,},so in X such that for x, € X
there exists u,, = d(xy, Xp+1) € D(x,, Tx;,) such that

n(rup < d(Xp, Xne1)
implies

Td(xn' xn+1) € S(Txn' Txn+1)
by lemma 6 we have

7d(Xp, Xnt1) € S(ny1, TXny1)

By definition, we can take x,,,, € Tx,41, then we have

Td(xn: xn+1) € S(d(xn+1! xn+2))-
Thus

d (X1, Xn42) S 17d(Xp, Xpy1)- (1)

If x,41 =x, for some n €N, then T has a fixed point. We assume that
Xns1 # Xp foralln € N U {0}. Now, from (1) we get
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d(xn' xn+1) < rd(xn—ll xn)

< Tzd(xn—ZJ xn—l)
< rd(xg, x1).

Now, forn > m

n—1
dCom ) < Y Al xi4n)
i=m

n-1

< Z rid(xe, x1)

i=m
m

1—r

< d(xg,x1)

Since r™ — 0 as m — oo, we obtain that ™ /(1 — r)d(xy,x;) = 0. Now,
according to Remark 5 (6) and (1) we conclude that for 0 « c there is a
natural number N, such that d(x,,, x,,) < c, for all n,m > N,. S0 {x, }ns0 IS
a Cauchy sequence in (X,d).Thus, there exists x* € X such that

*

lim,, e %, = x™.

Now, we want to show that x* € Tx*. First, we will prove that n(r)u, <
d(xp41,x*) for each n € N. For ¢ € intPchoose a natural number N;such
that d(x,,x*) <c and rd(x,y;,x*)€P for n>N;. Thus, c+
rd(Xpe1, ") —d(xp,x*) €P, e, d(x,x*) <c+rd(xyeq,x"). By
Remark 5 (3), we obtain d(x,, x*) < rd(x,41,x™) for n > N;. AS x,41 €
Tx,, we can take u,, = d(x,, Xn+1) € D(x,, Tx,). We have

Uy = d(xn: xn+1) < d(xn'x*) + d(x*'xn+1)

< rd(xn+1'x*) + d(x*'xn+1)

= (1 +1r)d(x", xpi1).

Thus

nMu, < d(xpeq,x¥).
Then
Td(Xp41,x") € s(Txpyq, Tx")
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by Lemma 6 we have
rd(Xp+1,x") € S(xn12,TX")

where x,,., € Tx,,,1. Hence, by definition we can take z,, € Tx* such that
d(Xn+2,2n) S 7d(Xp41,X7).

Now, for a given c € intPwe choose a natural number N, = max{N,, N;}
such that d(x,,x*) < c¢/(r + 1) for all n > N,. Hence, for n > N,we have
d(x*, zy) d(x*, Xpy2)+d(Xn12,Zn)
d(x*'xn+2) + rd(xn+1'x*)
c rc

+
r+1 r+1

<
<

K

=C.

Thus, z, - x*. Since Tx™ is closed, x* € Tx".

Remark 9.

Theorem 8 is a generalization of Theorem 2 of Kikkawa and Suzuk (2008)
from metric space to cone metric space without using normality of P.
Moreover, we use the notion s(Tx,Ty) which analogue the concept
H(Tx,Ty) in metric space.

The following example illustrates Theorem 8.

Example 10.

Let X =[0,1], E=C[0,1] and P ={x € E:x(t) = 0,t € [0,1]}. Let
d: X X X — E be of the form

(x +y)et if X+Yy
d(x,y) =

0 if xX=y

and let T: X —» Cl(X) defined by Tx = [0,x/2]. If we take r =2/3 then
n(r) =3/5.
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For x =y it is trivial and for x # y we can take y = x/2 € Tx and u =
d(x,x/3) € D(x,Tx) for any x € X. So u =4/3xe’ and then n(r)u =
4/5xet < 3/2xet = d(x,y). Now, we can choose x/3 € Tx and x/4 € Ty
which satisfied d(x/3,x/4) = 7/12 xet < xe' = rd(x,y).

Thus, rd(x,y) € s(d(x/3,x/4)) c s(Tx,Ty). Hence T has a fixed point.

Theorem 11. Let (X,d) be a complete cone metric space and T:X —
CB(X). Assume that there exist functions ¢,y:P — [0,1) and £ € R*

satisfy

(i)

(ii)

the following

¢(t) +yY(t) < 1foreacht € P and limsupgp(r;,) + P (r;,) < 1, for

n—-oo

any decreasing sequence {r;,} € P.

for any x,y€X, d)(d(x, y))d(x, y) + lp(d(x, y))s(x, Tx) +
?s(y,Tx) € ks(Tx,Ty)

where k > 1. Then T has a fixed point in X.

Proof.

Let x,

€ X and x; € Tx,, then

d(d(xo,%1))d (xo, %1) + 1 (d(x0, x1))s(x0, Txg) + £5(x1, Txo) <

Thus

Then

ks(Txy, Txq).

‘Ib(d (%o, x1))d(x0’ x1) + ¢(d(x0, x1))5(d(x0: x1))

+£5(d(x1,%x1)) € ks(Txg, Txq).

¢(d(x0,x1))d(x0,x1) + lp(d(xo'xﬂ)d(xo'xﬂ + £d(x1,x1)

€ ks(Txg, Txq).

By Lemma 6 we have

d(d(xo,%1))d (xo, x1) + P(d(x0, x1))d (%0, X1) € ks(xy, Txp).
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Let us take x, € Tx; then we have

¢(d(x0,x1))d(x0,x1) + w(d(xo’xﬂ)d(xo’xﬂ € ks(d(xq,x2).

Hence,

kd(xy, x2) < (9(d o, x1) + P(dxo x1)) ) d o, x1)-
Now, by using x4, x, in condition (ii) we have

P (d(x1,22))d (1, %2) + P (d(x1,%2))s(x1, Txp) + £5(x, Txp)
C ks(Txq, Txy).

Since x, € Tx,; we obtain
¢(d(x1,x2))d(x1,x2) + 1/J(d(x1,x2))s(d(x1,x2)) + £5(d(xz, x3))
C ks(Txq,Txy).
Then
(P(d(xl:xz))d(xl:xz) + ¢(d(x1'x2))d(x1'x2) + £d (xz,x3)

€ ks(Txq1, Txy).
By Lemma 6 we have

B (d(xy,x2))d(x1,x5) + ll)(d(xpxz))d(xpxz) € ks(xz, Tx,)

taking x5 € Tx, we have

¢(d(x1,x2))d(x1,x2) + w(d(xl'xz))d(xl'xz) € ks(d(xz,x3)).

Therefore,

kd(xz, x3) < (¢(d(x1,x2)) + ¢(d(x1,x2))) d(xq, x2).

By induction, we can construct a sequence {x;, },»oin X such that

kd Gt ng1) < ((d Gt %)) + Y (Ao, %)) ) d s, %)

where x,,,1 € Tx,. Thus,
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d)(d(xn—lr xn)) + lp(d(xn—ll xn))

d(xn'xn+1) < k d(xn—llxn)

< d(xXp—1,%n) (2)

We suppose that x,, 41 # x, for each n > 0 because if x,,,; = x,, for some n,
then T has a fixed point.

From (2) {d(xp, xn+1)}nso IS @ decreasing sequence in P. By (i) there exists
b € (0,1) and ny € N such that for n = n,,

(.b(d(xn—l;xn)) + lp(d(xn—lrxn)) <b.

Now,

d i, 1) < 3 ((ACno1, %)) + Y(d (o, %)) ) d Cnr, )
1
< 7 (#(@Gn-1,%0)) + (A (-1, %))

((»b(d(xn—z' xn—l)) + 1/’(d(xn—2' xn—l))) d(xn—z' xn—l)
n-1

1
< T, 1_[ (¢(d(xi'xi+1)) + lp(d(xi'xi+1))) d (g Xng+1)

i=n0

b n—ngy
< (E) d(Xny Xng+1)-
Forn>m=>n,
d(xm: xn) < d(xi'xi+1)

b
ki—mo d(xno’ xn0+1)
=m

<

~

pm—To

S km-no=1(k — b) d(xno’xno+1)'
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Since  p™ ™o /kMm Ml 50 a  m-—o o, we obtain that
(b™ "0 / (k™0 1)(k — b))d(xp,) Xn,+1) = 0. Now, according to Remark
5 (6) and (1) we conclude that for 0 « c there is a natural number N; such
that d(x,,, x,) < ¢, for all n,m > N;. So {x,},s0iS @ Cauchy sequence in
(X,d). Thus, there exists x* € X such that lim,,_,,, x, = x*.

Now, we want to show that x* € Tx*. We will create a sequence {z,},so in
Tx* such that, z,, — x*. From (ii) if we take x = x,,, y = x*we get

(d (e, x))d(xn, x°) + P (d(xn, 7)) s (e, Txy) + 5(x*, Tx,)

C ks(Tx,, Tx").
Then

¢ (d(n, x*))d G, ) + P (d (n, X)) 5(d (o, Xn41)) + £5(d (X, Xn41))

C ks(Tx,, Tx").
So

¢ (den, x*))d G, ) + P (d (0, X)) d (X, Xng1) + LA (X7, X1)

€ ks(Tx,, Tx™).
By Lemma 6 we get that

¢ (dCn, x*))d (n, x*) + (d (xn, X)) d (X, X 1) + A (X", Xng1)
€ ks(xp4q, TX").
Now, we can take z,, € Tx™ such that
(d (ot x*))d G, 1) + (A Gy 1) d (X, Xnar) + 2 (X", 1)

€ ks(d(xn+1,2p))-
Hence,

kd(Xn41,2n) < $(d(xn, x*))d Ctn, ) + P(d (0, X)) d (X, Xn41)

+ed(x*, Xpt1)-
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Then
P (d(xy, x™))

d(¥n+1,2p) < d(¥n, Xn+1)

lp(d(xn,x*))
k
Now,

d(x*: Zn) < d(x*;xn+1) + d(xn+1vzn)

CIENED)

< d(x*!xn+1) + k

d(xn, x")

P(d(xn, x7) t .
+ %d(xn’xn+1) +Ed(x ) Xns1)

1 1 {
< d(X*:xn+1) + Ed(xn'X*) + Ed(xn'xn+1) + Ed(X*'erl)

1
S Ued (7 xnp0) + 2d (0, x7) + (X7, Xpga) + A (X7, Xnr))-

Furthermore, for a given c € int P we choose a natural number N,such that
d(xp,x*) K kc/(3+ k + ¢) forall n > N,. Hence, for n > N, we have

3+k+€+3+k+{’+ 3+k+¢

k

1 k?c 3kc tkc
d(x*,z,) K — =c.

Thus, we get that z,, — x*. As Tx" is closed, then x* € Tx".

If k =1, ¢=0and a function y(t) = 0 for any t € P, we have the following
corollary which is a generalization of Mizoguchi-Takahashi's (1989) fixed
point theorem.

Corollary 12. (Cho-Bae (2011)). Let (X, d) be a complete cone metric space
and T: X —» CB(X). Assume that there exists a function ¢: P — [0,1) satisfy
the following

(i) limsup¢(r;,) < 1, for any decreasing sequence {r;,,} € P.

n—oo

(i) forany x,y € X, ¢(d(x,y)) d(x,y) € s(Tx, Ty)
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Then T has a fixed pointin X.

If k=1,y(t) =0foranyt € P, we have the following corollary which is a
generalization of Theorem 4 of Berinde-Berinde (2007).

Corollary 13. Let (X,d) be a complete cone metric space and T:X —
CB(X). Assume that there exist a function ¢: P — [0,1) and £ € R* satisfy
the following

(i) limsup¢(r,) < 1, for any decreasing sequence {r,} € P.

n—-oo

(i) forany x,y € X, ¢(d(x,y))d(x,y) + ¢s(y,Tx) < s(Tx,Ty)
Then T has a fixed pointin X.

If k=1, ¢(t) is a constant and ¥(t) =0for any t € P we have the
following corollary which is a generalization of Theorem 3 of Berinde-
Berinde (2007).

Corollary 14. Let (X,d) be a complete cone metric space, T: X —» CB(X),
a € (0,1) and ¢ € R*. Assume that for any x,y € X, ad(x,y) + €s(y, Tx)
c s(Tx, Ty)

Then T has a fixed pointin X.

Theorem 15. Let (X, d) be a complete cone metric space and T: X — Cl(X).
Let 8: P — E is a function with the following properties:

1) e=o0

(2) 6(ty +1t3) < O(8) +0(t)
(3) 0 is nondecreasing

4) t<0().

Assume that there exists a function ¢: P — [0, k), k < 1 such that

(i) limsupg¢(n,) < 1, for any decreasing sequence {r,} € P.

n—oo

(ii) for every x € X there exists y € Tx such that ¢(d(x, y))
6(d(x,y) € s (9(D(,Ty)))

96 Malaysian Journal of Mathematical Sciences



Fixed Point Results in Cone Metric Spaces for Multivalued Maps

and

s (19(D(x, Tx))) cs (kG(d(x, }’)))

where  9:2P — (@} » 2P — (¢} defined by 9(D(x,Tx)) =
UaeTxe(d(x:a))-

(iii) a function h is sequentially lower semicontinuous.
Then T has a fixed pointin X.

Proof.
Let x, € X be arbitrary and fixed. There exists x; € Txysuch that

$(d(x0,%1))0(d(x0,%1)) € s (19(D(x1,Tx1))) (3)

and

s (19(D(x0, Txo))) Cs (k@(d(xo,xl)))
Now, by using x; in condition (ii) there exists x, € Tx; such that
#(d(xy,%2))0(d(x1,x,)) € s (ﬂ(D(xz,sz)))

and

s (19(D(x1, Txl))) Cs (k@(d(xl,xz))) (4)

From (3) and (4) we obtain

¢ (d(xg,%1))0(d(x0,%1)) € s (k@(d(xl,xz))).
Thus
kH(d(xl,xz)) < ¢(d(x0,x1))0(d(x0,x1)).

By continuing this process, we get a sequence {x,, },>¢ such that

ko (d(xru xn+1)) < ¢(d(xn—lr xn))g(d(xn—lr xn))-
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Thus

JCICHENRE we(dm_pxn))

< 0(d(xp_1,%,)) ()

Therefore, {6(d(xy, xn+1))}n>0is a decreasing sequence in E. As 6 is non

decreasing, {d(x,,Xn+1)}ns0 IS @ decreasing sequence in P. By (i) there
exists b € (0,1) and ny € N such that for n > n,,

¢(d(xn—1r xn)) <b.

Now, from (5) we have
00 2110) < 2 (9(dCtos, )8 o, )

1
< ﬁ ¢(d(xn—1' xn))¢(d (xn—z' xn—l))g(d(xn—ZI xn—l))

n-—1
< g | | #(000)8 (4o 0,00))

i=n0

n—ngy

< (%) 0 (d(xno;xn0+1))'

Forn > m = n, and by using (2) we obtain

n-1
0(d(xpm,xn)) <06 (Z d(xi’xi+1)>

n-1

< Z 0(d(xi, xi41))
i=m
-1

n b i—Tlo
< (E) 0 (d(xno,xno+1))
i=m
bm—no

< km=no-1(k — b) o (d(xno'xno+1)) :
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Thus, for any c €intP there is a natural number N; such that
0(d(xm,xp)) < ¢, for all n,m>N;. We claim {x,},s0is a Cauchy
sequence, i.e., d(x,,, x,) < c. Suppose not, then there exist subsequences
{xn,} and {x,,, } such that ¢ < d(xp,,, xp,), Vi. Since 6 is nondecreasing, then
6(c) < 0 (d(Xmpn,))- That is () < 8 (d(m,xn,)) < c, but from (4)
we have ¢ < 6(c). It is a contradiction. Hence, {x,, },s0iS @ Cauchy sequence.
As (X, d) is complete, there exists x* € X such that lim,,_,,, x, = x™.

Now, we want to show that x* € Tx*. The function h is sequentially lower
semicontinuous, so for any c € int P, there exists N, € N such that
s(xp, Txy) € s(x*,Tx*) —c/2 and d(x,,x,4+1) K c/2 for each n > N,.
Since s(x,, Tx,) € s(x*,Tx*) — c¢/2, we obtain

c
s(d(xn, Xn41)) € s(x7, Tx") — 7

Then

c
d(xp, Xps1) € s(x*, Tx™) — 5

Thus, we can take z,, € Tx™ such that

c
d(xp, xn41) € s(d(x*,z)) — >
Thus

c
d(x*'Zn) - 5 < d(xn' xn+1)-

By Remark 5 (1) we obtain that d(x’,z,)—> <> which implies
d(x*,z,) < c.Then z, - x*. As Tx* is closed, then x* € Tx*, hence x is a
fixed point of T

Remark 16.

Theorem 15 is an extension of Theorem 2 of Pathak-Shahzad (2009) and
Theorem 4 of Kamran-Kiran (2011) to cone metric space. Moreover, it is
a generalization of Theorem 2 of Cho et al. (2012).

In Theorem 15 if we take the function 6 =1 identity function and the
function ¢p = c constant, then we get the following result.
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Corollary 17. (Cho et al.(2012)). Let (X, d) be a complete cone metric space
and T: X — Cl(X) be a multivalued map. If there exist constantsc, k € (0,1]
such that for anyx € X there exists y € Tx such that

cd(x,y) €s(y, Ty)
and

s(x,Tx) c s(kd(x,y))

then T has a fixed point in X provided ¢ < k and h is sequentially lower
semicontinuous.
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